Источники тепла в недрах Земли и закономерности его передачи

Источники тепла

Земля обладает тепловой энергией внешнего (экзогенного) и внутреннего (эндогенного) происхождения. Основными источниками внутренней тепловой энергии являются:

  • самопроизвольный распад радиоактивных элементов: элементы с периодом полураспада, меньшим периода формирования Земли, распались при первоначальном разогреве планетного вещества; распад долгоживущих элементов продолжается в настоящее время;
  • воздействие притяжения Солнца и Луны, приводящее к земным приливам и торможению Земли — за счет этого фактора за время существования Земли выделилось до 30% теплоты радиогенного происхождения;
  • гравитационная дифференциация вещества Земли и его расслоение с образованием плотного ядра и менее плотной оболочки;
  • тектонические процессы, вызывающие вертикальные и горизонтальные смещения крупных блоков земной коры и ее упругие деформации;
  • физико-химические процессы, протекающие в недрах Земли.

Радиоактивные элементы в земной коре составляют миллионные доли грамма на грамм породы. Однако за время существования нашей планеты образовавшегося тепла оказалось достаточно для разогрева внутренних слоев Земли, обусловившего развитие таких процессов, как вулканизм, метаморфизм, землетрясения, тепловое излучение и др.

Формирование тепла Земли тесным образом связано с историей происхождения нашей планеты. Согласно новейшей (1950) гипотезе (Шмидт и др.), образование планет, и в том числе Земли, произошло в результате сгущения протопланетного облака пыли, вращающегося вокруг Солнца. Первоначальное вещество планет, находящееся в холодном состоянии, под влиянием сгущения вещества планеты и внутреннего тепла от радиоактивного распада элементов стало постепенно разогреваться, что вызвало впоследствии дифференциацию вещества и образование оболочек Земли. Образование из первичного холодного вещества современных оболочек Земли происходило по принципу зонного его плавления. Возникающие при этом сложные физико-химические процессы приводили к тому, что легкоплавкие вещества поднимались из глубин Земли к ее поверхности, а тяжелые компоненты опускались к ядру. В процессе зонной плавки происходило расслоение нашей планеты на определенные оболочки, а также высвобождение огромной энергии. По мнению академика А.П. Виноградова, именно в результате зонной плавки вещества планеты, происходящей под влиянием энергии радиоактивного распада, образовались оболочки Земли: атмосфера, гидросфера и твердая оболочка.

Помимо тепла, поступающего из недр, земная поверхность получает лучистую энергию Солнца в течение всего года. Температура самых верхних слоев земной коры зависит от поступления солнечного тепла.

Суточные изменения температуры распространяются на глубину не более 1–2 м. До глубины 20–25 м температура испытывает сезонные колебания. На этой глубине располагается пояс постоянной годовой температуры (нейтральный слой), равной средней годовой температуре воздуха на поверхности Земли. Верхняя часть земной коры, располагающаяся выше нейтрального слоя и испытывающая влияние солнечного тепла, получила название гелиотермической зоны.

Нейтральный слой в разных районах земной поверхности располагается на различных глубинах. Последнее зависит от амплитуды температур на поверхности, от теплопроводности горных пород: чем резче колебания температур и выше теплопроводность горных пород, тем глубже расположен нейтральный слой. К примеру, для Москвы температура нейтрального слоя равна +4,2?C и зафиксирована на глубине 20 м.

Ниже нейтрального слоя находится геотермическая зона, для которой свойственно тепло, генерируемое самой Землей.

Под геотермальной энергией понимают физическое тепло глубинных слоев Земли, имеющих температуру, превышающую температуру воздуха на поверхности. В качестве носителей этой энергии могут выступать как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Средняя по земной поверхности величина теплового потока, поступающего из недр к поверхности, составляет весьма малую величину — около 0,03 Вт/м2.

Тепловые свойства горных пород

К тепловым свойствам горных пород, влияющим на геотермальную обстановку, относятся теплопроводность, тепловое сопротивление, теплоемкость и температуропроводность.

Теплопроводность, или точнее коэффициент теплопроводности ?, Вт/м · К, представляет собой коэффициент пропорциональности закона Фурье, связывающего плотность теплового потока q, Вт/м2, с градиентом температур grad T, К/м:

q = ?? grad T

Пористость и влажность влияют на теплопроводность горной породы. Сухие и пористые породы обладают меньшим коэффициентом теплопроводности, чем монолитные и влажные. Наличие в порах пород движущейся жидкости изменяет механизм теплопереноса, добавляя к кондуктивному конвективный теплоперенос.

Тепловое сопротивление ?, м · К/Вт, — величина, обратная теплопроводности:

? = 1/?

Удельная теплоемкость вещества C, кДж/кг · К, определяется формулой

C = dQ/mdT

где dQ, кДж, — количество тепла, подведенное к массе вещества m, кг, для нагрева ее на dT, К.

Коэффициент температуропроводности a, м2/с, характеризует собой скорость изменения температуры единицы объема среды в нестационарных процессах и определяется формулой

a = ?/C?,

где ? — плотность породы, кг/м3.

Температуропроводность горных пород зависит от следующих факторов:

  • плотности горных пород — температуропроводность уменьшается с возрастанием плотности;
  • влажности горных пород — температуропроводность повышается с увеличением влажности, причем повышение происходит до некоторого предела влажности (разного для различных горных пород), выше которого температуропроводность понижается, так как при значительной влажности увеличивается теплоемкость пород;
  • вида жидкости, содержащейся в породе (нефтеносные породы имеют более низкие значения температуропроводности, чем водоносные, так как тепловое сопротивление у нефти выше сопротивления воды);
  • температуры пород — температуропроводность уменьшается с увеличением температуры пород в связи с увеличением их теплового сопротивления и теплоемкости;
  • слоистости пород — по напластованию температуропроводность выше.

Температуропроводность практически не зависит от минерализации пластовых вод.

Виды теплопередачи

Геотермический градиент. В геотермической зоне температура повышается с глубиной. В верхней мантии на глубине 400 км температура составляет 1700?C, на глубине 2900 км она приближается к 2500 °C, а на глубине 5000 км она составляет около 5000 °C.

Перенос тепла в земной коре осуществляется кондуктивной теплопередачей, обусловленной теплопроводностью горных пород, и конвективной теплопередачей, связанной с циркуляцией подземных флюидов — воды, нефти, магмы, газов. Несмотря на то что конвективный перенос тепла не является главной причиной теплопереноса, подземные флюиды и, прежде всего, вода занимают особое место в общем переносе тепла Земли благодаря высокой миграционной способности, значительной теплоемкости и участию в геологических процессах. Подземные пластовые воды активно циркулируют, находясь в круговом обмене с поверхностными и атмосферными водами. В районах с активной циркуляцией подземных вод перенос тепла резко возрастает и уменьшается температурный градиент. Подземные воды, обладая большой теплоемкостью, при движении перераспределяют тепловой поток, вызывая тепловые аномалии.

Геотермический градиент Г, К/м, определяется формулой:

Г = dT/dH,

где H, м, глубина.

В практике геологических и гидрогеотермических исследований геотермический градиент обычно определяют для интервала 100 м, и в среднем для земной коры этот градиент равен 3 К. Наличие температурного градиента объясняется существованием глубинного теплового потока, направленного к поверхности Земли.

Интервал глубин земной коры в метрах, на котором температура повышается на 1 К, называется геотермической ступенью:

G = 1/Г

Геотермическая ступень колеблется в значительных пределах и зависит от ряда причин: теплопроводности, характера залегания и состава горных пород, движения подземных вод, гидрохимических процессов.

В среднем для осадочных пород геотермическая ступень принимается равной 33 м, а в действительности колеблется от 5 до 160 м (на территории России от 20 до 100 м). Средние значения геотермической ступени для древних кристаллических щитов составляют более 100 м, для платформы 30–80 м, для области новейшего вулканизма 5–20 м.

Для большинства площадей с пластовым типом водоносных горизонтов зависимость температуры от глубины линейная:

TH = T0 +?H,

где TH — температура горных пород на глубине H, К; T0 — температура нейтрального слоя пород, К; Г — геотермический градиент,стабильный с глубиной, К/м; H — глубина, м.

Необходимо отметить, что величина геотермического градиента изменяется довольно значительно не только в различных районах, но и в пределах одного и того же района. Значение геотермического градиента меняется также с глубиной и зависит от теплопроводности горных пород, слагающих геологический разрез. Горные породы разного состава отличаются по теплопроводности. В массиве, сложенном кристаллическими породами, имеющими высокую теплопроводность, геотермический градиент малый. Глины отличаются малой теплопроводностью, и в глинистых толщах наблюдается быстрый рост температуры с глубиной и, соответственно, большой геотермический градиент.

Как уже отмечалось, существенную роль в переносе тепла играют подземные воды. Они могут транспортировать тепло из глубоких зон к поверхности. И наоборот, нисходящие потоки воды в областях питания водоносных коллекторов охлаждают земную кору.

Наиболее высокие температуры с глубиной наблюдаются в районах современной вулканической деятельности, к которым в России относится Камчатская область. В местах выхода парогидротерм на Нижнекошелевском месторождении на Камчатке геотермические градиенты составляют 0,25–0,45 К/м. На Паужетском месторождении высокотермальных вод на юге Камчатки максимальная температура на глубине 250 м — около 200 ?C.

Из невулканических областей наиболее прогретым является Северокавказский регион, где значения геотермического градиента составляют 0,03–0,05 К/м, тогда как средние его значения для Москвы — 0,02, Санкт-Петербурга — 0,025, Нижнего Поволжья — 0,021, Урала — 0,012 К/м. На глубине 2000 м на Русской платформе установлены температуры в среднем 40–50?C, на Сибирской платформе — 35–40 ?C, а в Восточном Предкавказье температура изменяется от 70 до 125?C.

На рисунке 1 показано изменение усредненной температуры с глубиной погружения осадочных отложений для Восточного Предкавказья.

Изменение усредненной температурной кривой с глубиной для Восточного Предкавказья
Рисунок . 1. Изменение усредненной температурной кривой с глубиной для Восточного Предкавказья

На Тарумовском геотермальном месторождении в Дагестане, при строительстве самых глубоких скважин на термальные воды, в забое на глубине 5500 м зафиксирована температура 198 °C.

В таблице 1 приведены средние значения геотермической ступени и градиента для некоторых районов России и ближнего зарубежья.

Геотермические ступени и градиенты для некоторых районов
Таблица 1. — Геотермические ступени и градиенты для некоторых районов

В заключение отметим, что геотермические условия на территории России чрезвычайно разнообразны. Если в вулканических районах Камчатки температура пород и флюидов нередко достигает 100°C уже на первых десятках метрах от поверхности, то в северных районах Сибири отрицательная температура пород прослеживается иногда до глубин, превышающих 1000 м. В Северо-Кавказском регионе глубина залегания изотермы 100?C составляет около 1500 м, тогда как в центральных и северо-западных районах европейской части страны она погружается до 6000 м.

Ресурсы геотермальной энергии

Виды ресурсов и запасов геотермальной энергии

Геотермальная энергия — тепловая энергия Земли, выходящая из ее глубинных слоев в верхние поверхностные слои за счет теплопроводности твердых пород, а также в виде горячей воды или парогазовой смеси.

Геотермальные ресурсы подразделяются на гидрогеотермальные и петрогеотермальные. Гидрогеотермальные ресурсы являются частью ресурсов геотермальной энергии, которая заключена в естественных коллекторах и представлена природными динамическими носителями тепловой энергии недр — геотермальными водами (вода, пар, пароводяные смеси). Петрогеотермальные ресурсы представляют собой часть тепловой энергии, которая заключена в скелете водовмещающих пород и в практически водонепроницаемых сухих горных породах.

Из всех пригодных для использования геотермальных ресурсов на долю термальных вод приходится чуть более 1% и соответственно около 99% — на петрогеотермальные ресурсы. Практическое использование колоссальных запасов тепла петрогеотермальных ресурсов связано с необходимостью решения ряда весьма сложных научно-технических проблем проектирования и создания в промышленных масштабах эффективных подземных искусственных систем извлечения тепла — циркуляционных систем, тепловых котлов повышенной проницаемости. Поэтому на современном этапе развития техники и технологий освоения геотермальной энергии масштабы ее практического использования определяются размерами эксплуатационных запасов и теплоэнергетическим потенциалом термальных вод, т. е. величиной гидрогеотермальных ресурсов.

Используемые в настоящее время термины эксплуатационные запасы и прогнозные ресурсы гидрогеотермальной энергии — по существу, синонимы. Термин эксплуатационные запасы употребляется обычно при оценке возможности применения термальных вод для удовлетворения теплоэнергетических потребностей конкретных объектов. В тех случаях, когда оцениваются потенциальные возможности эксплуатации термальных вод в том или ином регионе, употребляется термин прогнозные ресурсы.

Прогнозные ресурсы гидрогеотермальной энергии — это максимальное количество природного теплоносителя и тепловой энергии, которые могут быть получены из системы условных водозаборов, размещенных относительно равномерно по всей оцениваемой площади при технико-экономических показателях добычи, обеспечивающих эффективное их теплоэнергетическое использование в течение расчетного срока.

Эксплуатационные запасы гидрогеотермальной энергии (термальных вод и тепла) — это часть прогнозных ресурсов, которые могут быть получены из оцениваемого водоносного комплекса рациональными в технико-экономическом и экологическом отношениях водозаборными сооружениями при заданном режиме их эксплуатации и соответствующем качестве теплоносителя (температура, химический и газовый состав), удовлетворяющем требованиям его целевого использования в течение всего расчетного срока эксплуатации. Эксплуатационные запасы выражаются в объемных расходах воды (в м3/сут), а запасы тепловой энергии — в ГДж, тоннах условного топлива (т у. т.).

Эксплуатационные запасы на месторождениях различного типа обеспечиваются естественными запасами и ресурсами, искусственными запасами и привлекаемыми ресурсами.

Естественные запасы следует рассматривать как массу подземных вод, заключенных в поровом пространстве продуктивных водоносных горизонтов внутри контура месторождения (участка), которая может быть высвобождена за счет гравитационных сил. Полная масса воды в поровом пространстве продуктивных горизонтов представляет собой геологические запасы. Геологические запасы включают и так называемые упругие запасы, высвобождающиеся из порового пространства при частичной или полной сработке пластового давления. В случае снижения уровня ниже кровли продуктивного комплекса может быть извлечена гравитационная масса воды, определяемая коэффициентом водоотдачи и объемом осушенных водовмещающих пород. Эта масса воды также является частью геологических запасов и называется емкостными запасами.

Естественные запасы, участвующие в формировании эксплуатационных запасов подземных вод, складываются из упругих и, в некоторых случаях, емкостных запасов.

Эксплуатационные запасы оцениваются по результатам комплекса геологоразведочных работ на конкретных месторождениях для удовлетворения потребностей в теплоносителе конкретных хозяйственных объектов.

Величина прогнозных ресурсов и эксплуатационных запасов гидрогеотермальной энергии зависит от применяемой технологии извлечения их из недр.

В настоящее время применяются традиционная технология, базирующая на преимущественном использовании пластовой энергии недр, и технология геоциркуляционных систем (ГЦС), базирующая на обратной закачке отработанного теплоносителя в эксплуатируемый водоносный горизонт. При геоциркуляционной технологии достигается восполнение ресурсов теплоносителя в недрах, поддержание пластового давления и, соответственно, интенсификация процесса извлечения тепловой энергии недр, а также решение проблемы экологически безопасного сброса использованных вод.

Традиционная технология реализуется при фонтанном или насосном способах эксплуатации скважин. При фонтанной эксплуатации производительность скважины ограничивается величиной избыточного устьевого давления, и при малых его значениях эксплуатация скважины, как правило, становится экономически не эффективной.

Создание дополнительного понижения уровня воды в скважинах с помощью погружных насосов позволяет существенно увеличить производительность скважин. Но при этом возникают дополнительные технические проблемы, связанные с созданием высокопроизводительных, высоконапорных насосов, способных работать в условиях высоких температур и коррозионно-агрессивных жидкостей.

Искусственные запасы возникают при разработке продуктивных горизонтов геоциркуляционными технологиями. Их следует понимать как дополнительное количество воды (полезных компонентов, тепла), которое может быть получено из продуктивного горизонта в сравнении с вариантом разработки без применения обратной закачки.

В таблицах 1 и 2 приведены классификация и распределение ресурсов геотермальной энергии по регионам России.

Привлекаемые ресурсы — это дополнительное питание (водное или тепловое) продуктивного горизонта в нарушенных эксплуатацией условиях. К привлекаемым ресурсам следует относить перетекание из смежных горизонтов, отжатие воды из глин, активизацию притока глубинной составляющей при снижении уровня, усиление инфильтрационного питания и др. Привлекаемые ресурсы тепла возникают вследствие охлаждения продуктивного горизонта и активизации теплопритока из окружающих пород или возрастания теплового потока за счет изменения градиента.

Валовой потенциал — средний годовой объем геотермальной энергии, содержащийся в исследуемом массиве горных пород в границах освоенной глубины бурения, при полном ее превращении в полезно используемую энергию.

Классификация ресурсов геотермальной энергии
Таблица 1. — Классификация ресурсов геотермальной энергии
Распределение ресурсов геотермальной энергии по регионам России
Таблица 2. — Распределение ресурсов геотермальной энергии по регионам России

Технический потенциал — часть валового потенциала, преобразование которого в полезно используемую энергию возможно при данном уровне развития технических средств, при соблюдении требований по охране окружающей среды.

Экономический потенциал — часть технического потенциала, преобразование которого в полезно используемую энергию экономически целесообразно при данном уровне цен на ископаемое топливо, тепловую и электрическую энергию, оборудование, материалы и транспортные услуги, оплату труда и др.

При эксплуатации термальных вод по традиционной технологии из недр извлекается: при фонтанной эксплуатации — (2–10) · 10?2 %, при насосной — (7–56) · 10?2 % запасов термальных вод. При геоциркуляционной технологии этот показатель достигает 20–30%, т. е. на много порядков выше. Коэффициент извлечения тепла из недр составляет (3–17) · 10?3 % при фонтанной эксплуатации, (1–8) · 10?2 % — при насосной, увеличиваясь до 5–13% при применении геоциркуляционной технологии. Соответственно во много раз возрастают и прогнозные ресурсы термальных вод.

Методика оценки геотермальных ресурсов

Общие потенциальные геотермальные ресурсы. Они характеризуют тепловой потенциал толщи пород на прогнозируемую глубину бурения до 10 км. Оцениваются исходя из предпосылки, что массив горных пород можно охладить до температуры окружающей среды, хотя практически вряд ли это возможно. Плотность распределения ресурсов определяется по следующей формуле:

Qо = kCV (Hпр ? hнс) (tиз ? tос),

где Qо — плотность распределения ресурсов, т у. т./м2; k — коэффициент перехода от тепловой энергии к условному топливу, т у. т./Дж; CV — объемная теплоемкость пород, Дж/(м3 · ?C); Hпр — прогнозируемая глубина бурения, м; hнс — мощность нейтрального слоя, м; tиз — средняя температура массива, ?C; tиз = 0,5(tпр + tнс); tпр — температура пород на прогнозируемой глубине, ?C; tнс — температура нейтрального слоя, ?C; tос — температура окружающей среды, ?C.

Технически доступные геотермальные ресурсы рассчитываются в двух режимах, определяемых потребителем: режим 70/20 ?C — для горячего водоснабжения (ГВС) и 90/40 ?C — для отопления.

В режиме 70/20 ?C плотность ресурсов геотермальной энергии определяется следующим выражением:

Qт = k?CV (Hн ? Hв) (t’из? 20),

где Qт — плотность ресурсов, т у. т./м2; ? — коэффициент температурного извлечения (? = 0,125); Hн — нижняя граница ресурсного интервала, м (Hн = 6000 м); Hв — верхняя граница ресурсного интервала, м; Hв = [(tв ? tнс)/Г] + hнс; t’из = 0,5(tв + tн); tв— температура на верхней границе ресурсного интервала, ?C (в этом режиме для получения теплоносителя с температурой не менее 70 ?C средняя температура массива t’из с учетом потерь при транспортировке должна быть не менее 80?C); tн — температура на нижней границе массива ресурсного интервала, ?C; tн=Г(Hн ? hнс)+tнс. Исходя из положения t’из ? 80 ?C: tв = 2t’из? tн, тогда минимальное значение tв = 160 ? tн. При высоких значениях tн вводится ограничение tв ? 30 ?C.

Плотность ресурсов геотермальной энергии в режиме 90/40?C определяется по формуле:

Qт = k?CV (Hн ? Hв) (t’из ? 40).

Для обеспечения температуры теплоносителя, равной 90 ?C, средняя температура массива должна быть не менее 100 ?C, а заданная температура на верхней границе ресурсного интервала — не менее 50 ?C.

Экономически эффективные геотермальные ресурсы складываются из двух составляющих: QЭ(1) — теплосодержания рабочего горизонта со средней температурой пород, близкой к потребностям заказчика при условии равных или меньших приведенных затрат на добычу теплоты недр по сравнению с затратами на другие сопоставимые источники энергии; QЭ(2) — теплосодержания нижележащих пород до ограниченной глубины, определяемой из условия равенства затрат на добычу геотермальной энергии и затрат на другие сопоставимые источники энергии.

Методика оценки гидрогеотермальных ресурсов

Оценка гидрогеотермальных ресурсов заключается в определении производительности водозаборного сооружения при заданном понижении уровня воды в скважинах или, наоборот, в прогнозе понижения уровня воды при заданной производительности водозаборного сооружения. Одновременно должно соблюдаться условие, что при расчетном водоотборе качество термальных вод будет удовлетворять необходимым кондициям в течение всего срока эксплуатации водозабора.

Ресурсы термальных (теплоэнергетических) вод подсчитываются как по месторождениям или эксплуатационным участкам с целью обоснования строительства водозаборных сооружений для теплоснабжения конкретных объектов, так и в пределах крупных гидрогеологических регионов для обоснования перспективных генеральных схем использования этих вод на различные нужды народного хозяйства, а также направлений и объемов поисково-разведочных работ.

На месторождениях (участках) оценка выполняется по результатам специальных разведочных работ или по данным эксплуатации действующих водозаборных сооружений.

Расчет прогнозных ресурсов термальных вод выполняется на основе региональных оценок, которые целесообразно осуществлять в пределах отдельных гидрогеологических структур по основным перспективным водоносным комплексам (горизонтам) с последующим их разделением при необходимости на экономические или административные единицы.

Оценка выполняется на основе гидрогеотермического районирования территории с выявлением зон, каждая из которых характеризуется сочетанием усредненных значений основных гидрогеологических и гидрогеотермических параметров, определяющих в комплексе размеры ресурсов и теплоэнергетический потенциал термальных вод, а также геолого-экономические показатели их промышленного освоения.

По результатам оценки ресурсов производится геолого-экономическое районирование перспективных территорий по комплексу показателей, определяющих возможные масштабы, экономический эффект, последовательность изучения и промышленного освоения гидрогеотермальных ресурсов. Региональная оценка прогнозных ресурсов должна не только выявить, сколько термальной воды можно получить в данном перспективном районе и каков ее теплоэнергетический потенциал, но и ответить на вопросы эффективного промышленного освоения ресурсов (методы разработки водоносных горизонтов, способы эксплуатации скважин и их взаимное расположение, возможные схемы энергетических систем и т. д.).

Оценка эксплуатационных запасов термальных вод и их теплоэнергетического потенциала проводится на основании утвержденных кондиций. Кондиции представляют собой совокупность экономически и технологически обоснованных требований к качеству и количеству воды, техническим условиям эксплуатации месторождения при рациональном использовании недр и соблюдении правил охраны окружающей среды.

Кондиции должны учитываться при составлении проектов разработки и обустройства месторождений термальных вод. Для разработки технико-экономических обоснований (ТЭО) кондиций должны привлекаться специализированные проектные или проектно-исследовательские организации.

Основные показатели кондиций, обосновываемые в ТЭО:

  • минимальная температура воды (или энтальпия пароводяной смеси) на устье скважины;
  • максимально допустимая минерализация и предельное содержание отдельных компонентов или их групп, включая содержание не конденсирующихся газов в парогидротермах (двуокиси углерода, сероводорода, метана, аммиака, азота, водорода, этана);
  • минимальные избыточные давления воды или пара на устьях эксплуатационных скважин и максимальные давления на устьях нагнетательных скважин;
  • предельные глубины и дебиты эксплуатационных скважин.

Кроме того, в проекте кондиций должны быть обоснованы способы и средства водоподъема, система транспортировки воды до потребителя, согласованный с заказчиком расчетный срок эксплуатации водозабора и режим водоотбора в пределах этого срока, способы удаления использованных вод.

В каждом конкретном случае эксплуатационные запасы оцениваются с учетом заявленной потребности в теплоносителе и наличия действующих водозаборных сооружений с целью установления возможного взаимного влияния проектируемого и действующих водозаборных сооружений и обоснования ожидаемого прироста запасов.

Расчет водозабора включает обоснование рациональной схемы размещения эксплуатационных и нагнетательных (в случае применения ГЦС-технологии) скважин, режима их эксплуатации.

В случаях неравномерного водопотребления в течение года оценка эксплуатационных запасов теплоносителя проводится в двух вариантах: при непрерывном равномерном и заданном неравномерном режимах водопотребления. Ограничивающими показателями являются величины допустимых понижений уровня в эксплуатационных скважинах, а также допустимые с технико-экономических позиций величины давления нагнетания (в случае применения ГЦС-технологии).

При оценке эксплуатационных запасов весьма важно определить срок разработки месторождения, в течение которого количество и качество подземных вод должно соответствовать техническим условиям, а ожидаемые величины снижения давления или уровня в скважинах не превысят допустимых.

При оценке эксплуатационных запасов месторождений теплоэнергетических вод используют в основном гидродинамический и гидравлический методы.

Гидродинамический метод базируется на достаточно строгих гидродинамических и теплофизических решениях и применяется для пластовых систем и приуроченных к ним месторождений. Метод основан на прогнозных расчетах изменения дебитов и уровней с учетом параметров водоносных пород, определяемых по данным гидрогеологических работ в период разведки месторождений.

При добыче глубоких подземных вод проявляются упругие свойства вод и пород, что приводит к длительному неустановившемуся притоку подземных вод к скважинам. Интенсивность и характер изменения уровней и дебитов зависит от ряда факторов:

  • водопроводимости и пьезопроводимости и их изменения по площади эксплуатационного участка и за его пределами в зоне влияния водозабора;
  • граничных условий месторождения и эксплуатационного участка, определяемых наличием областей создания напора, выклиниванием или резким изменением мощности или литолого-фациальных свойств водовмещающих пород;
  • суммарного дебита водозабора и дебитов отдельных скважин и их изменения в процессе эксплуатации.

Водопроводимость грунтов и пород T, м2/сут или м2/с, — это произведение коэффициента фильтрации k на мощность m водоносного пласта:

T = km.

Водопроводимость характеризует единичный (на единицу ширины потока) фильтрационный расход по простиранию водоносного пласта при градиенте напора, равном единице.

Пьезопроводность водоносных пластов представляет собой отношение водопроводимости T к водоотдаче ?:

a = T/?

В напорных пластах вместо гравитационной водоотдачи ? принимается упругая водоотдача ?.

Пьезопроводность является показателем скорости перераспределения напора и сработки запасов водоносного пласта в условиях неустановившейся фильтрации. Для стационарных потоков, в которых не происходит изменения напоров и сраб