Баланс возобновляемой энергии океана

Основная доля энергии, поступающей в Мировой океан – результат поглощения им солнечного излучения. Энергия поступает в океан также в результате гравитационного взаимодействия космических тел и водных масс планеты, создающего приливы, и поступления тепла из глубины планеты. Поверхность Мирового океана занимает около 70 % поверхности всей планеты и составляет примерно 360 млн. км2. Большая часть этой поверхности постоянно свободна ото льда и хорошо поглощает солнечное излучение. В океанской воде примерно 65 % солнечного излучения поглощается первым метром водной толщи и до 90 % – десятиметровым слоем. В дневное время в низких широтах вода прогревается примерно на 10 м и более за счет процессов теплопроводности и турбулентного перемешивания (твердая поверхность суши прогревается не более чем на 0,5 м).

Запасенное океаном тепло частично в виде длинноволнового излучения (? >10 мкм) переизлучается, а частично передается в атмосферу теплопроводным пограничным слоем и вследствие испарения. Относительная роль этих процессов различна для разных районов планеты, но на широтах от 70° с.ш. до 70° ю.ш. характеризуется примерно одинаковыми значениями: длинноволновое излучение в атмосферу и космическое пространство 41 %; передача тепла атмосфере за счет теплопроводности 5 %; потери на испарение 54 %.

За счет движения воздушных и водных масс запасенная океаном энергия переносится по всей планете, причем в области между экватором и 70° с. ш. в среднем 40 % тепла переносится океанскими течениями, а на 20° с. ш. вклад океана в перенос энергии составляет до 74%. Ежегодно с поверхности океана испаряется слой воды толщиной примерно 1 м (около 340·1012 т) и около 36·1012 т воды возвращается со стоком рек, ледников и т.п.

Примерно 2/3 суммарного солнечного излучения испытывают в океане и на поверхности суши различные изменения: преобразуются в тепло 43 %; расходуются на испарение, образование осадков 22 %; сообщение энергии рекам, ветру, волнам, различным видам течений в океане 0,2 %. Примерно 0,02 % всей энергии воспринятого солнечного излучения идет на образование продукции фотосинтеза и частично на образование ископаемого топлива.

Соизмерим с этой величиной суммарный поток энергии, поступающей из недр Земли и в виде приливной энергии. Выделить из указанных потоков те, что непосредственно имеют отношение только к океану, достаточно трудно. Для энергетики важны не абсолютные величины мощностей различных источников, а лишь та их часть, которую можно преобразовать в требуемые для хозяйственной деятельности виды энергии.

Сотрудниками океанографического института Скриппса (США) выполнены оценки суммарных и допустимых для переработки мощностей различных океанических источников энергии за пять лет – с 1977 по 1982 г. Соответствующие данные приведены на диаграммах рис. 12.1.1, на которых отмечены два уровня – суммарный и допускающий преобразование (заштрихован). Более поздние оценки сделаны с учетом целого ряда технологических и экологических факторов. Они, как правило, в части допустимой к использованию энергии оказались ниже.

Распределение океанских источников энергии по мощности
Рис. 12.1.1. Распределение океанских источников энергии по мощности (правые столбцы – по оценкам 1977 г., левые – по оценкам 1982 г.).

При оценке возможностей приливной энергетики учтено, что работать на полную мощность ПЭС могут только в течение 30 % времени. Данные по океанским течениям получены с учетом 1 % допустимого замедления скорости течения. При оценке возможностей энергетического использования продукции океанского фотосинтеза приняты во внимание 50 % эффективности преобразования бурых водорослей в метан и возможность размещения соответствующих ферм в 20 % районов естественного апвеллинга. Апвеллинг – подъем глубинных вод, богатых биогенными веществами, играющими роль удобрений. Для прибрежных волновых генераторов установлены КПД 50 % и время работы 40 % годового бюджета времени. КПД преобразования градиента солености принят равным 3%, а градиента температур – 5 %, причем в последнем случае считается реальным разместить преобразователи на 2 % поверхности океана в тропической зоне. Для ветровых станций коэффициент преобразования энергии ветра принят равным 60%, и допустимым уровнем изъятия мощности считают 1 % мощности ветров, дующих на удалении от берега.

Немаловажны и такие «технологические» свойства океанских ресурсов энергии, как плотность энергии и стабильность источника энергии. Эти свойства определяют размеры будущих преобразователей, необходимые установленные мощности, режимы использования энергии.

Энергия течений и волн

Энергия всех стационарных течений и циркуляций в Мировом океане составляет величину около 1019 Дж/год. Наиболее мощные течения океана — потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн м3/с воды со скоростью до 2 м/с, и Флоридского течения (30 млн м3/с, скорость до 1,8 м/с).

Мощность W, которая переносится течением, определяется его скоростью u и площадью поперечного сечения S:

W = ?u3?S.

Эта мощность оказывается не очень концентрированной по сравнению с мощностью рассмотренных выше энергетических источников океана. Например, для случая течения Куросио при характерной скорости течения около 1 м/с, вертикальном размере течения около 100 м и горизонтальном размере 10 км мощность не превышает 1,0 ГВт. При этом нужно учесть коэффициент полезного действия технических средств преобразования энергии ?, который всегда меньше единицы.

Для океанской энергетики представляют интерес течения в проливах: Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству. Кроме того, такие установки на современном этапе не смогут конкурировать по эффективности с системами преобразования термальной энергии океана.

Определенный интерес представляет использование энергии поверхностных волн в океане. Общая мощность всех поверхностных волн в Мировом океане составляет около 2,7·1012 Вт, что соответствует суммарной энергии около 1020 Дж/год. Это достаточно большая величина, однако использование этой энергии затруднено ее малой поверхностной плотностью.

В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую.

Ввиду низкой плотности волновой энергии ее используют в основном для питания маломощных потребителей длительного пользования, например надводных автономных буев, маяков, научных приборов и т.п.

Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Исследования и разработки систем преобразования поверхностных волн океана ведутся в настоящее время в Великобритании, Франции, Японии.

В преобразователях волновой энергии обычно выделяют два контура: первый воспринимает воздействие волн и превращает их энергию в потенциальную или кинетическую энергию рабочего тела (чаще всего жидкого или газообразного); во втором контуре происходит преобразование энергии рабочего тела в электроэнергию (обычно посредством турбин).

Волновые энергетические станции (ВлЭС) отличаются от традиционных главным образом конструкцией первого контура. С этой точки зрения можно выделить две группы ВлЭС:

  1. установки, в которых волны воздействуют непосредственно на рабочее тело ВлЭС;
  2. установки, где воздействие волн передается через промежуточное звено, которое, используя свойство рычага, сжимает рабочее тело ВлЭС.

Первый контур перспективных ВлЭС первого типа («осциллирующий водный столб» (ОВС), «Каймей», «выпрямитель» Рассела) прост по конструкции и недорог, однако имеет невысокий КПД. Переменное и низкое давление рабочего тела на выходе (избыточное давление не может быть выше высоты столба воды в гребне) и, как следствие, невозможность объединения нескольких устройств первого контура для перехода на один преобразователь второго контура ведут к большим энергетическим потерям в нем и низкому качеству генерируемой электроэнергии.

ВлЭС второго типа («ныряющая утка» Солтера, «контурный плот» Коккерела и др.) — это громоздкие и сложные сооружения, имеющие высокий КПД преобразования энергии волн и сравнительно высокое давление рабочего тела на выходе, что позволяет объединять несколько устройств первого контура для перехода на один вторичный преобразователь. В результате снижаются энергетические потери во втором контуре и его удельная стоимость.

Станции с конструктивным решением типа ОВС (рис.6.6а) в настоящее время являются единственно применяемыми на практике. Цена вырабатываемой электроэнергии на такой установке остается высокой из-за низкого (0,17–0,23) КПД. Низкий КПД обусловлен тем, что турбина работает на низкопотенциальном и переменном по величине и направлению потоке воздуха.

Схемы ВлЭС
Рис. 6.6. Схемы ВлЭС: а — ОВС;б — «ныряющая утка»; 1 — волноприемная камера; 2 — турбогенератор; 3 — «клюв»; 4 — вал

Конструкция типа «ныряющая утка» (рис.6.6б) соответствует почти всем требованиям к ВлЭС и обладает очень высоким (до 0,9) КПД, но имеет проблемы на пути практического применения. Наличие узлов трения в соединениях «клювов» с валом установки и поршневых системах сжатия жидкого рабочего тела гидрогенератора, а также длинного вала, объединяющего множество «клювов» и работающего на излом, снижает надежность и долговечность установки.

Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2–3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

Практическое использование энергии поверхностных волн возможно во многих районах Мирового океана. Для нашей страны наибольший интерес представляют районы северо-западной части Тихого океана, где значительные погодные возмущения обусловливают систематическое поверхностное волнение.

Преобразователи энергии волн

Преобразователи, отслеживающие профиль волны

В этом классе преобразователей остановимся в первую очередь на разработке профессора Эдинбургского университета Стефана Солтера, названной в честь создателя «утка Солтера». Техническое название такого преобразователя – колеблющееся крыло. Форма преобразователя обеспечивает максимальное извлечение мощности (рис. 12.3.1.1).

«Утка Солтера»
Рис. 12.3.1.1. «Утка Солтера»: а – схема преобразования энергии волны; б – вариант конструкции преобразователя; 1 – плавучая платформа; 2 – цилиндрическая опора с размещенными в ней приводами и электрогенераторами; 3 – асимметричный поплавок.

Волны, поступающие слева, заставляют утку колебаться. Цилиндрическая форма противоположной поверхности обеспечивает отсутствие распространения волны направо при колебаниях утки вокруг оси. Мощность может быть снята с оси колебательной системы с таким расчетом, чтобы обеспечить минимум отражения энергии. Отражая и пропуская лишь незначительную часть энергии волн (примерно 5%), это устройство обладает весьма высокой эффективностью преобразования в широком диапазоне частот возбуждающих колебаний (рис. 12.3.1.2).

Эффективность «утки Солтера»
Рис. 12.3.1.2. Эффективность «утки Солтера» (диаметр 15 м, ось зафиксирована).

Первоначально Солтером был создан макет достаточно узкополосного по частоте устройства. В волновом бассейне оно поглощало до 90 % падающей энергии. Первые испытания в условиях, близких к морским, были проведены в мае 1977 г. на оз. Лох-Несс. 50-метровая гирлянда из 20-метровых «уток» общей массой 16 т была спущена на воду и испытывалась в течение 4 месяцев при различных волновых условиях. В декабре того же года эта модель в 1/10 будущей величины океанского преобразователя была вновь спущена на воду и дала первый ток. В течение 3 мес одного из самых суровых зимних периодов модель первой английской волновой электростанции работала с КПД около 50 %.

Дальнейшие разработки Солтера направлены на то, чтобы обеспечить утке способность противостоять ударам максимальных волн и создать заякоренную гирлянду преобразователей в виде достаточно гибкой линии. Предполагается, что характерный размер реальной утки будет равен примерно 0,1? , что для 100-метровых атлантических волн соответствует 10 м. Нить из уток протяженностью несколько километров предполагается установить в районе с наиболее интенсивным волнением западнее Гебридских островов. Мощность всей станции будет примерно 100 МВт.

Наиболее серьезными недостатками для «уток Солтера» оказались следующие:

  • необходимость передачи медленного колебательного движения на привод генератора;
  • необходимость снятия мощности с плавающего на значительной глубине устройства большой протяженности;
  • вследствие высокой чувствительности системы к направлению волн необходимость отслеживать изменение их направления для получения высокого КПД преобразования;
  • затруднения при сборке и монтаже из-за сложность формы поверхности «утки».

Другой вариант волнового преобразователя с качающимся элементом – контурный плот Коккерелла. Его модель также в 1/10 величины испытывалась в том же, что и «утка Солтера», году в проливе Солент вблизи г. Саутгемптона. Контурный плот – многозвенная система из шарнирно соединенных секций (рис. 12.3.1.3). Как и «утка», он устанавливается перпендикулярно к фронту волны и отслеживает ее профиль.

Вариант выполнения контурного плота Коккерелла
Рис. 12.3.1.3. Вариант выполнения контурного плота Коккерелла: 1 – колеблющаяся секция; 2 – преобразователь; 3 – тяга; 4 – шарнир.

Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера (но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным). Изготовление таких плотов не потребует создания новых промышленных предприятий и позволит поднять занятость в судостроительной промышленности.

Преобразователи, использующие энергию колеблющегося водяного столба

При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость может быть связана с атмосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэлса. Уже известны по крайней мере два примера коммерческого использования устройств на этом принципе – сигнальные буи, внедренные в Японии Масудой (рис. 12.3.2.1) и в Великобритании сотрудниками Королевского университета Белфаста. Более крупное и впервые включенное в энергосеть устройство построено в Тофтестоллене (Норвегия) фирмой Kvaernor Brug A/S. Основной принцип действия колеблющегося столба показан на рис. 12.3.2.2. В Тофтестоллене он используется в 500-киловаттной установке, построенной на краю отвесной скалы. Кроме того, национальная электрическая лаборатория (NEL) Великобритании предлагает конструкцию, устанавливаемую непосредственно на морском дне.

Схема установки, в которой используется принцип колеблющегося водного столба
Рис. 12.3.2.1. Схема установки, в которой используется принцип колеблющегося водного столба (разработана Национальной инженерной лабораторией NEL, Великобритания, размещается непосредственно на грунте, турбина приводится в действие потоком одного направления): 1 – волновой подъем уровня; 2 – воздушный поток; 3 – турбина; 4 – выпуск воздуха; 5 – направление волны; 6 – опускание уровня; 7 – впуск воздуха.

Главное преимущество устройств на принципе водяного колеблющегося столба состоит в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного сечения канала. Это позволяет сочетать медленное волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность удалить генерирующее устройство из зоны непосредственного воздействия соленой морской воды.

Пневмобуй Масуды
Рис. 12.3.2.2. Пневмобуй Масуды: 1– корпус; 2 –электрогенератор; 3 – клапан; 4 – воздушная турбина.

Подводные устройства

Преимущества подводных устройств состоят в том, что эти устройства позволяют избежать штормового воздействия на преобразователи. Однако при их использовании увеличиваются трудности, связанные с извлечением энергии и обслуживанием.

Для примера можно рассмотреть преобразователь типа «бристольский цилиндр», относящийся к группе устройств, работающих под действием скоростного напора в волне. Наполненный воздухом плавучий корпус (цилиндр), имеющий среднюю плотность 0,6-0,8 т/м3, закреплен под водой на опорах, установленных на грунте. Цилиндр колеблется в волне, совершая движение по эллиптической траектории и приводя в действие гидравлические насосы, вмонтированные в опоры и преобразующие энергию движения цилиндра. Перекачиваемая ими жидкость может подаваться по трубопроводам на генераторную станцию, единую для нескольких цилиндров.

Одно из преимуществ идеи «бристольского цилиндра» то, что после настройки на оптимальную частоту он не отражает энергию других частот, а дает ей возможность распространяться далее, где ее могут поглотить другие преобразователи, например цилиндры с другой частотой.

Основы преобразования энергии волн

Огромные количества энергии можно получить от морских волн. Мощность, переносимая волнами на глубокой воде, пропорциональна квадрату их амплитуды и периоду. Поэтому наибольший интерес представляют длиннопериодные (T ? 10 с) волны большой амплитуды (a ? 2 м), позволяющие снимать с единицы длины гребня в среднем от 50 до 70 кВт/м.

Наибольшее число волновых энергетических устройств разрабатывается для извлечения энергии из волн на глубокой воде. Это наиболее общий тип волн, существующий при условии, что средняя глубина моря D превышает величину половины длины волны  ? / 2.

Поверхностные волны на глубокой воде имеют следующие основные характерные особенности:

  • волны являются неразрушающимися синусоидальными с нерегулярной длиной, фазой и направлением прихода;
  • движение каждой частицы жидкости в волне является круговым (в то время как изменяющиеся очертания волн свидетельствуют о распространении волнового движения, сами по себе частицы не связаны с этим движением и не перемещаются в его направлении);
  • амплитуда движения частиц жидкости экспоненциально уменьшается с глубиной.
  • существенно, что амплитуда волны а не зависит от ее длины ?, скорости распространения c, периода T, а зависит лишь от характера предшествовавшего взаимодействия ветра с морской поверхностью.

В волнах на глубокой воде нет поступательного движения жидкости. В подповерхностном слое жидкости ее частицы совершают круговое движение с радиусом орбиты a, равным амплитуде волны (рис. 12.2.1). Высота волны H от вершины гребня до основания равна ее удвоенной амплитуде (H = 2a). Угловая скорость движения частиц ? измеряется в радианах в секунду. Изменение формы волновой поверхности таково, что наблюдается поступательное движение, хотя сама вода не перемещается в направлении распространения волны (слева направо). Это кажущееся перемещение есть результат наблюдения фаз смещения последовательно расположенных частиц жидкости; как только одна частица в гребне опускается, другая занимает ее место, обеспечивая сохранение формы гребня и распространение волнового движения вперед.

Характеристики волны
Рис. 12.2.1. Характеристики волны.

Соотношение, устанавливающее зависимость между частотой и длиной для поверхностной волны на глубокой воде

формула
Период движения волны
формула
Скорость частицы жидкости в гребне волны
формула
Скорость перемещения поверхности волны в направлении x определится как
формула

Скорость c называют фазовой скоростью распространения волн, создаваемых на поверхности жидкости. Эта величина не зависит от амплитуды волны и неявным образом связана со скоростью движения частиц жидкости в волне.

Полная кинетическая энергия на единицу ширины волнового фронта и единицу длины вдоль направления распространения волны равна

формула

Нормированная потенциальная энергия волны равна в точности такой же величине

формула

Полная энергия на единицу площади поверхности волны равна сумме кинетической и потенциальной энергий.

формула

Выражение для энергии на единицу ширины волнового фронта и на единицу длины волны вдоль направления его распространения запишется в виде

формула
Подставим ? из (12.2.1)
формула
что с учетом (12.2.2)
формула

Выражение для мощности, переносимой в направлении распространения волны на единицу ширины волнового фронта, имеет вид

формула

С учетом (12.2.7) и (12.2.11) мощность P? равна полной энергии (кинетическая + потенциальная) E в волне на единицу площади поверхности, умноженной на величину u = c/2 групповую скорость волн на глубокой воде, с которой волны переносят энергию. С учетом выражения для групповой скорости

формула

Различие между групповой и волновой (фазовой) скоростями является общим для любых волновых процессов, для которых фазовая скорость зависит от длины волны (дисперсия).

Подставляя в (12.2.11) фазовую скорость в виде (12.2.4), получаем соотношение

формула

Следовательно, мощность, переносимая волнами, увеличивается прямо пропорционально квадрату амплитуды и периоду. Именно поэтому для специалистов по океанской энергетике особенно привлекательны длиннопериодные волны, обладающие значительной амплитудой.

На практике волны оказываются совсем не такими идеализированно синусоидальными, как это подразумевалось выше. Обычно в море наблюдаются нерегулярные волны с переменными частотой, направлением и амплитудой. Поскольку результирующее волнение чаще всего нельзя представить суммой волн, действующих в одном направлении, то мощность, извлекаемая преобразователями направленного действия, будет значительно ниже той, которую переносят волны.

Использование энергии приливов и морских течений

Общие сведения об использовании энергии приливов

Приливные колебания уровня в огромных океанах планеты вполне предсказуемы. Основные периоды этих колебаний – суточные продолжительностью около 24 ч и полусуточные – около 12 ч 25 мин. Разность уровней между последовательными самым высоким и самым низким уровнями воды – высота прилива R. Диапазон изменения этой величины составляет 0,5-10 м. Первая цифра наиболее характерна, вторая достигается и даже превосходится лишь в некоторых особенных местах вблизи побережья континентов. Во время приливов и отливов перемещение водных масс образует приливные течения, скорость которых в прибрежных проливах и между островами может достигать примерно 5 м/с.

Поднятую на максимальную высоту во время прилива воду можно отделить от моря дамбой или плотиной в бассейне площадью A. Места с большими высотами приливов обладают большими потенциалами приливной энергии. Однако не только этот фактор важен для развития приливной энергетики: надо принимать во внимание и капитальные затраты, и будущую прибыль от создания соответствующих приливных электростанций (ПЭС).

Энергия приливных течений может быть преобразована подобно тому, как это делается с энергией ветра. Преобразование энергии приливов использовалось для приведения в действие сравнительно маломощных устройств еще в средневековой Англии и в Китае. Из современных ПЭС наиболее хорошо известны крупномасштабная электростанция Ранс мощностью 240 МВт, расположенная в эстуарии реки Ла Ранс, впадающей в залив Сен Мало (Бретань, Франция), и небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева моря (Россия). Из мест, которые давно приковывают внимание гидростроителей, следует назвать эстуарий реки Северн в Великобритании и залив Фанди на восточном побережье Северной Америки на границе между США и Канадой. Характеристики мест возможного строительства ПЭС в России приведены в таблице 13.1.1.

Основные места концентрации приливной энергии в России
Таблица 13.1.1 Основные места концентрации приливной энергии в России

Высота, ход и периодичность приливов в большинстве прибрежных районов хорошо описаны и проанализированы благодаря потребностям навигации и океанографии. Поведение приливов может быть предсказано достаточно точно, с погрешностью менее 4%. Таким образом, приливная энергия оказывается весьма надежной формой возобновляемой энергии.

При ее преобразовании возникают и определенные неудобства:

  • несовпадение основных периодов возникновения приливов (12 ч 25 мин и 24 ч 50 мин), связанных с движением Луны, с привычным для человека периодом солнечных суток (24 ч), в связи с чем оптимум приливной генерации находится не в фазе с потребностями в энергии;
  • изменение высоты прилива и мощности приливного течения с периодом в две недели, что приводит к колебаниям выработки энергии;
  • необходимость создания потоков воды с большим расходом при сравнительно малом перепаде высот, что заставляет использовать большое число турбин, работающих параллельно;
  • очень высокие капитальные затраты на сооружение большинства предполагаемых ПЭС;
  • потенциальные экологические нарушения и изменение режимов эстуариев и морских районов.

Мощность приливных течений и приливного подъема воды

Вблизи побережья и между островами приливы могут создавать достаточно сильные течения, пригодные для преобразования энергии. Устройства для преобразования энергии приливных течений будут практически сходны с аналогичными устройствами, приводимыми в действие течениями рек.

Соотношения, позволяющие оценить мощность приливных течений, подобны тем, которые используются в ветроэнергетике, при этом следует иметь в виду, что плотность воды во много раз выше плотности воздуха, а скорости течения воды сравнительно низки.

Плотность мощности потока воды, Вт/м2, равна

формула
В случае приливного или речного течения при скорости, например, 3 м/с
формула

Только часть полной энергии потока может быть преобразована в полезную. Как и для ветра, это значение ? не может превышать 60%. На практике оказывается, что ? можно довести максимум до 40%.

Скорости приливных течений изменяются во времени примерно как
формула
где ? – период естественного прилива, 12 ч 25 мин для