Выщелачивание ЖМК сернокислыми растворами

Известны более сотни способов выщелачивания глубоководных конкреций (ЖМК) сернокислыми растворами. Ниже в качестве дальнейшего развития процессов химического извлечения цветных металлов (Cu, Ni, Со, Mo и др.) сернокислыми растворами рассматриваются новые способы, запатентованные в зарубежных странах.

По способу, предложенному в Японии, ЖМК выщелачивают разбавленным раствором H2SO4. Отличие состоит в том, что раствор содержит органические вещества, например HCHO, декстрин, остатки переработки древесины, нефти и др.

Выщелачивание ЖМК из области «Necker Ridge» H2SO4 вели при 245 °С и давлении 0,35 МПа. Установили, что, соблюдая эти параметры, выщелачиванием можно извлечь кобальт, никель и медь более чем на 90% каждого, а железо и марганец остаются в хвостах.

В обзоре работ по выщелачиванию ЖМК отмечаются положительные результаты применения для экстракции из сернокислых и солянокислых растворов выщелачивания ЖМК органических соединений, например LIX 64. Во Франции фирмой «Corbin и Scoares» предложена технология переработки комплексных ЖМК (8—40 % Mn; 3—25 % Fe; 0,5—3,0 % Al; 0,7—2,0 % Ni; 0,5—1,6 % Cu; 0,1—0,5 % Co, небольшие количества Zn, Cd, Ga, Mo, РЗМ), включающая измельчение сырья, репульпацию водой и двухстадийное сернокислотное выщелачивание. На первой стадии процесс ведут при нормальных условиях, а па второй — в автоклавах с подачей острого пара при
250 °С в течение 1—8 ч для растворения меди, никеля и кобальта. Затем пульпу продувают SO2 для растворения марганца. Пульпу фильтруют и из фильтрата осаждают никель, медь и кобальт, а после отделения электролизом получают MnO2.

Выщелачивание ЖМК в солянокислых средах

Как отмечалось выше, медь, никель и кобальт и некоторые другие металлы, содержащиеся в ЖМК, входят в кристаллическую решетку марганцевых минералов и для извлечения цветных металлов необходимо разрушить кристаллическую решетку путем восстановления Mn4+.

Фирмой «Deep — Sea Ventures» (DSV) разработан процесс выщелачивания ЖМК концентрированным раствором HCl, при этом ? кислоты окисляется до Cl2:

MnO2 + 4HCl > MnCl2 + Cl2 + 2H2O.

Отмечают, что газообразный хлор не используется в дальнейшем в процессе и может являться товарным. Солянокислотный способ выщелачивания ЖМК усовершенствован фирмой «Metallurgi Hoboken Overpelt”. По этому способу газообразный Cl2, выделяющийся в процессе выщелачивания ЖМК, используется для окисления Mn2+ в слабокислой среде для осаждения оксидов марганца и раствора после извлечения цветных металлов (Cu, Ni, Co). Для осаждения марганца используют MgO, а образующийся MgCl2 легко регенерируется
пирогидролизом. Для исключения выделения газообразного хлора при выщелачивании ЖМК приведенным выше процессом предложен способ извлечения цветных металлов (Cu, Ni, Со) в растворе HCl, но с добавкой пирротинового концентрата в количестве, необходимом для практически полного восстановления Mn4+ до Mn2+ и максимального перехода в раствор цветных металлов. Процесс Mn4+ > Mn2+ в общем виде может быть представлен реакцией

2MnO2 + 2FeS + 6HCl > 3MnCl2 + Fe2O3nH2O + 2Sv + (n — 3) H2O.

Как известно, пирротиновый концентрат содержит цветные металлы (Cu, Ni и др.), которые также переходят в раствор. В качестве восстановителя вместо пирротинового концентрата рекомендуется использовать H2S. Предложенным способом процесс можно вести также раствором H2SO4.

Японские исследователи представили результаты экспериментов по выщелачиванию ЖМК в 0,1 н. растворе HCl при 30—70 °С. Кинетика процесса описана моделью объемной реакции. Установлено, что скорость выщелачивания меди и никеля имеет второй порядок по содержанию этих компонентов. Обращено внимание на аналогичное поведение кобальта и марганца при выщелачивании; растворение обоих металлов ускоряется с повышением температуры от 30 до 70 °С.

Для осаждения из раствора от выщелачивания ЖМК при помощи HCl (или H2SO4) цветных металлов (Cu, Ni и Со) в виде их гидроксидов предложено в раствор добавлять материалы с высокой реакционной способностью, содержащие CaCO3 и, в частности, ила с морского дна, кальцита с целью очищения раствора от ионов Fe+ и щелочей.

Описан процесс по переработке ЖМК, в котором применяют обжиг при 600—1000 °C и в качестве реагента— CaCl2, на последующей стадии огарок подвергают выщелачиванию.

Нетрадиционным подходом к решению задачи извлечения цветных металлов, железа и марганца из ЖМК является способ, сущность которого заключается в следующем: восстановление элементов (Ni, ( и, Со, Fe, Mn), находящихся в составе ЖМК, проводят в щелочно-марганцевой электролитической ячейке, в которой в качестве компонента катодно-активного материала используют ЖМК, а смесь порошка цинка с щелочным электролитом образует анодно-активный материал. Катодно-активный материал, представляющий собой смесь ЖМК с графитом в соотношении 9: 1, пропитан 40 %-ным раствором КОН, насыщенным ZnO. Анодно-активным материалом является гелеобразная смесь порошка цинка с 40 %-ным раствором КОН, содержащим 2,8 % карбоксиметилцеллюлозы. Через ячейку с разделенными диафрагмой катодно- и анодно-активными материалами пропускали постоянный ток. После этого катодно-активную смесь выщелачивали в растворе, содержащем 3 моль/л H2SO4, при 80—90 °С в течение 2 ч. В зависимости от напряжения на ячейке степень извлечения меди, никеля и кобальта составляла 80—100 %, а марганца — не превышала 60 %.