Использование для донной продувки СО2

Для улучшения перемешивания и рафинирования металла от ряда примесей используют инертные и малореактивные газы (азот и аргон), вдуваемые в конвертер снизу. Основным перемешивающим газом остается азот. Аргон как более дорогой газ применяют обычно только на заключительном этапе окислительного рафинирования стали с регламентированным содержанием азота.

Можно ли для перемешивания в конвертерах с комбинированной продувкой использовать СО2? Привлекает эффект увеличения вдвое объема перемешивающих пузырьков, образующихся в результате реакции СО2 + [С] = 2СО, что должно обеспечить возможность уменьшения расхода вдуваемого газа.

В опытных плавках, проведенных в совместных исследованиях МИСиСа и Новолипецкого металлургического комбината, в качестве перемешивающего газа использовали СО2. В цехе, где проводили эксперименты, ощущался недостаток аргона, ограничивающий эффективность комбинированной продувки. Применение СО2 могло бы помочь в ликвидации этих трудностей и уменьшить затраты на аргон. Плавки проводили на марках стлали, где в качестве перемешивающего газа для донной продувки металла использовали азот (8-10 мин), а на конечной стадии плавки — аргон в течение такого же времени. Для получения стали с пониженным содержанием азота длительность аргонной продувки увеличивали до 12-14 мин.

Диоксид углерода — слабоокислительный (по сравнению с кислородом) газ. При рассмотрении физико-химических особенностей его взаимодействия с расплавом важно определить возможные варианты реакций, так как окисляться могут и углерод, и железо.

1. Взаимодействие диоксида углерода с растворенным углеродом по реакции

Взаимодействие диоксида углерода с растворенным углеродом

происходит с удвоением объема перемешивающего газа, что позволяет уменьшить расход газа, подаваемого снизу, или (при этом же расходе и той же подводящей системе) увеличить эффективность донной продувки.

2. Диоксид углерода взаимодействует и с железом по реакции
Диоксид углерода взаимодействует и с железом по реакции

Расчеты показывают, что эта реакция будет протекать преимущественно только при очень малых концентрациях углерода.

Эксперименты показали, что при использовании в качестве перемешивающего газа СО2 содержание азота в металле в конце операции было существенно ниже (<0,0030 %), чем обычно. Полученные результаты можно объяснить тем, что при вдувании СО2 снизу поступление азота в металл уменьшается из-за сокращения длительности продувки азотом, а удаление его усиливается в связи с интенсификацией перемешивания жидкой ванны.

Содержание азота в готовом металле может быть дополнительно уменьшено, если применять защиту струи металла при выпуске из конвертера. Аргон слишком дорог для использования в этом технологическом приеме, а применение диоксидауглерода может реально обеспечить защиту металла от поглощения азота.

Подогрев газов, используемых для донного дутья

Весьма заманчивым представляется увеличить приходную часть теплового баланса конвертерной плавки за счет подогрева газов, подаваемых для перемешивания через днище. Такие работы, проведенные на 160-т конвертерах Западно-Сибирского металлургического комбината, показали, что сконструированные устройства (рисунке 5) позволяют подогревать газ за счет тепла, аккумулированного футеровкой, до 480—500 °С (расход газа до 24 м3/мин, длина трубопровода около 50 м). При этом улучшается тепловой баланс, предотвращаются образование настыли и заметалливание донных фурм.

Схема подогрева газа, используемого для донной продувки

1 — пазы; 2 — витки трубопровода

Рисунок 5 – Схема подогрева газа, используемого для донной продувки

«Малошлаковая» технология

Одной из важнейших проблем в организации рациональной технологии сталеплавильного производства является выбор состава шихты. Основная часть металлошихты конвертерной плавки — это чугун. Традиционным требованием к составу чугуна является максимально меньшее содержание в нем серы и фосфора. Получение низкосернистого чугуна сопряжено с
определенным температурным режимом доменной плавки и использованием в доменной печи основного шлака, вследствие чего увеличивается расход кокса, возрастает масса шлака, снижается производительность доменных печей и т. п.

Если нужно в доменной печи получить чугун с низким содержанием серы, требуется иметь основный шлак. Поскольку он более тугоплавок, требуется увеличивать расход кокса. Вместе с тем чем выше температурный режим и расход известняка (для получения основного шлака), тем выше в чугуне содержание восстановленного из руды кремния.

Доменщики считают, что каждой 0,1 % уменьшения содержания кремния в чугуне соответствует снижение расхода кокса на 3,4 кг/т чугуна. В свою очередь, сталеплавильщики для получения в конвертере стали с низким содержанием серы традиционно ведут плавку с высокоосновным шлаком (CaO/SiO2 = 3,0-3,5 и более). В настоящее время возникла новая ситуация: металлурги располагают разработанными и опробованными технологиями внедоменной обработки чугуна и внепечной обработки стали. Эти технологии обеспечивают возможность существенно снизить содержание серы и в чугуне, и встали.

В этой связи неизбежно возникает вопрос о том, какие требования предъявлять к составу чугуна в новых, изменившихся условиях. К этим новым условиям следует отнести и то, что в настоящее время Россия не располагает богатыми разрабатываемыми месторождениями марганца. В целом возникла проблема целесообразности перехода на использование в конвертерном производстве чугунов с низким содержанием марганца и кремния.

На рисунке 6 приведены результаты расчетных и экспериментальных данных, из которых, в частности, следует, что при снижении в чугуне концентрации кремния увеличивается выход жидкой стали, уменьшаются масса шлака и расход извести. Это и понятно. Чем больше в чугуне кремния, тем значительнее угар (кремний полностью окисляется в первые минуты продувки), тем больше образуется кремнезема (SiO2) и больше требуется извести (СаО) для получения высокой основности (CaO/SiO2).

Влияние содержания кремния [Si]4 и фосфора [Р]ч в чугуне и содержания углерода в металле перед выпуском [С]вып на выход жидкой стали

Рисунок 5 – Влияние содержания кремния[Si]4 и фосфора [Р]ч в чугуне и содержания  углерода в металле перед выпуском [С]вып на выход жидкой стали

Соответственно увеличиваются общая масса шлака и масса железа (в виде оксидов) в шлаке, т. е. возрастают потери железа со шлаком.  Таким образом, расчеты и практика показывают, что переход на использование низкокремнистого (и маломарганцовистого) жидкого чугуна целесообразен. Это позволяет повысить производительность доменных печей (при одновременной экономии кокса), снизить расходы флюсов в конвертерном производстве, уменьшить потери со шлаком, повысить стойкость футеровки и др. Переход на работу с низкокремнистым и маломарганцовистым чугуном обеспечивает увеличение выхода металла минимум на 1,0-1,5 %. Кроме того, несколько облегчаются условия работы
шлакоуборки, уменьшаются шлаковые отвалы и т. п.

В то же время есть ряд негативных моментов:

  1. Переработка маломарганцовйстого чугуна связана с определенными трудностями («свертывание» шлаков, повышенный угар и др.). Это недостаток, но ситуация исправима. Переработка чугуна с низким содержанием марганца должна сопровождаться  приемами, как ввод в состав шихты содержащих марганец добавок, оставление в конвертере шлака предыдущей плавки, использование «ожелезненной» извести и др.
  2. При использовании технологий, включающих внепечную обработку и чугуна, и стали, может вызвать сомнение верность требования иметь в конвертере высокую основность конечного шлака. Возможность снизить эту величину и пределы возможного снижения определяет практика, причем при снижении основности эффективность перехода на малокремнистые чугуны станет еще заметнее.
  3. Снижение содержания в чугуне кремния приведет к уменьшению доли металлолома в шихте. На первый взгляд это недостаток. Однако события последних лет показали, что в России испытывается не избыток, а недостаток качественного лома. Приходится учитывать, что качество металлолома (прежде всего по содержанию примесей цветных металлов) непрерывно ухудшается; соответственно сужаются возможности использовать такой металлолом для производства качественных сталей. Постепенно расширяется практика использования в качестве охладителей различных железорудных материалов, материалов типа «синтиком», металлизованных железорудных.окатышей и др., что сопровождается существенным снижением содержания примесей цветных металлов (по данным ряда заводов, в 1,5—2 раза).

При изучении малошлаковой технологии нельзя не отметить такой известный технологический прием, как оставление в печи или конвертере полностью или частично конечного жидкого шлака. При этом меняются и тепловой баланс, и технология плавки. По расчетам, 12-17 % общего расхода тепла конвертерной операции — это тепло конечного шлака. Шлак уже сформирован, он содержит много СаО и оксидов железа, поэтому при его оставлении в конвертере снижается расход извести, уменьшаются потери железа со шлаком и сокращается период формирования жидкоподвижного активного шлака.

Необходимо только учитывать такие моменты, как:

  • постепенное накопление в шлаке фосфора (при многократном оставлении шлака);
  • возможность возникновения выбросов при контакте жидкого чугуна с жидким железистым шлаком.