Первым способом массового производства жидкой стали был бессемеровский процесс (в конвертере с кислой футеровкой), предложенный и разработанный англичанином Г. Бессемером в 1856—1860 гг.; несколько позже — в 1878 г. — С.Томасом был разработан схожий процесс в конвертере с основной футеровкой (томасовский процесс).
Возникновение бессемеровского процесса имело исключительно важное значение для развития техники, поскольку до его появления не существовало способов производства литой стали в больших количествах, а применявшиеся в то время пудлинговый процесс получения железа в тестообразном состоянии и тигельный процесс получения жидкой стали в тиглях емкостью менее 50 кг не могли удовлетворить потребности развивающегося машиностроения.
Сущность конвертерных процессов на воздушном дутье (бессемеровского и томасовского) заключается в том, что залитый в плавильный агрегат (конвертер) чугун продувают снизу воздухом; кислород воздуха окисляет примеси чугуна, в результате чего он превращается в сталь; при томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера. Тепло, выделяющееся при окислении, обеспечивает нагрев стали до температуры выпуска (~ 1600 °С).
Устройство конвертера.
Бессемеровский и томасовский конвертеры представляют собой сосуд грушевидной формы, выполненный из стального листа с футеровкой изнутри. Футеровка бессемеровского конвертера кислая (динасовый кирпич), томасовского — основная (смолодоломит).
Сверху в суживающейся части конвертера — горловине — имеется отверстие, служащее для заливки чугуна и выпуска стали. Снизу к кожуху крепится отъемное днище с воздушной коробкой. Дутье, подаваемое в воздушную коробку, поступает в полость конвертера через фурмы (сквозные отверстия), имеющиеся в футеровке днища. Дутьем служит воздух, подаваемый под давлением 0,30—0,35 МПа. Цилиндрическая часть конвертера охвачена опорным кольцом; к нему крепятся цапфы, на которых конвертер поворачивается вокруг горизонтальной оси.
Стойкость днища бессемеровского конвертера составляет 15—25 плавок, томасовского 50—100 плавок, после чего их заменяют. Стойкость остальной футеровки выше: у томасовского конвертера 250—400 плавок, у бессемеровского 1300— 2000 плавок.
Плавка в бессемеровском конвертере
В конвертер заливают бессемеровский чугун (0,7—1,25 % Si; 0,5-0,8 % Мп; 3,8-4,4 % С; < 0,06 % Р; < 0,06 % S) при температуре 1250—1300 °С и продувают его воздухом в течение 10—15 мин. За время продувки окисляются углерод, кремний и марганец чугуна и из образующихся окислов формируется кислый шлак. После того, как углерод окислился до заданного содержания, продувку заканчивают, металл через горловину конвертера сливают в ковш, одновременно раскисляя его путем добавки в ковш раскислителей.
Общая длительность плавки составляет 20—30 мин; по-скольку шлак кислый (55—65 % SiO2; 15—25 % FeO; 15—20 % МпО), при плавке не удаляются сера и фосфор.
Плавка в томасовском конвертере
В конвертер для образования основного шлака загружают известь (12—18 % от массы металла), заливают томасовский чугун (1,6-2,0 % Р; 0,2-0,6 % Si; 0,8-1,3 % Mn; <0,08 % S; 2,8—3,3 % С), имеющий температуру 1180—1250 °С, и ведут продувку воздухом в течение 16—22 мин. За это время окисляются углерод, кремний и марганец; из продуктов окисления составляющих чугуна и СаО извести формируется основной шлак и в конце продувки в этот шлак частично удаляются фосфор и сера.
Продувку заканчивают, когда содержание фосфора в ме¬талле снизится до 0,05—0,07 %, после чего металл выпускают в ковш, куда вводят раскислители.
Общая длительность плавки составляет 25—40 мин. Состав конечного шлака: 16—24 % Р2O5, 42—45 % СаО, 5—10 % SiO2, 8—15 % FeO, 7—10 % МпО; благодаря высокому содержанию Р2O5 этот шлак используют в качестве удобрения.
Видоизменения бессемеровского и томасовского процессов
Достоинства бессемеровского и томасовского процессов — высокая производительность, простота устройства конвертера, отсутствие необходимости применять топливо, малый расход огнеупоров и связанные с этим более низкие, чем при мартеновском и электросталеплавильном процессах, капитальные затраты и расходы по переделу. Однако обоим процессам был присущ большой недостаток — повышенное со-держание азота в стали (0,010—0,025 %), вызываемое тем, что азот воздушного дутья растворяется в металле. По этой причине бессемеровская и томасовская стали обладают повышенной хрупкостью и склонностью к старению.
Для получения стали с пониженным содержанием азота в 1950—1965 гг. были разработаны и находили промышленное применение способы продувки снизу дутьем, обогащенным кислородом (до 30—40 % 02 в дутье), смесью кислорода и водяного пара в соотношении 1:1 и смесью кислорода и СO2 в соотношении 1:1.
Увеличение содержания кислорода в дутье до 30—40 % (вместо 21 % в воздухе) не решило проблему; выплавляемая сталь содержала 0,006—0,009 % азота, т.е. больше, чем мартеновская. Дальнейшее же увеличение доли кислорода в дутье оказалось неприемлемым, так как вызывало быстрое разрушение футеровки днища из-за его перегрева вблизи фурм вследствие выделения здесь тепла экзотермических реакций окисления составляющих чугуна. При воздушном дутье столь сильного перегрева не было из-за охлаждающего воздействия азота, которого в воздухе больше (79 %), чем в обогащенном дутье.
Способы продувки смесями 02-СO2 и O2—Н2О пар обеспечивали низкое содержание азота в стали (0,001—0,0035 %), но из-за высокой стоимости и сложности не нашли широкого применения.
В период с 1955 по 1975 г. бессемеровский и томасовский процессы и их разновидности были вытеснены кислородно-конвертерными процессами с верхней и нижней подачей дутья.